Thank you, guys, for your thoughts. I got thinking about this after receiving some samples of Cerex N-Fusion non-woven and then reading this in the April 2013 issue of Composites World magazine:
(Begin Quote)
Glass vs. carbon
Permeability issues also vary based on fiber type. “The space between the 5- to 7-micron diameter filaments of carbon fiber is almost nonexistent compared to that between the 20-micron diameter glass fiber filaments, especially when compacted under a vacuum,” Steggall illustrates. “Glass is easier to infuse because of the bigger diameter bundles.” He also notes that carbon fabrics use stitch yarns that are half the size of those used in most glass fabrics, so the vertical openings are much smaller. “There is no such thing as a fast infusion of carbon fiber,” Steggall contends. “It is very difficult to achieve the same speed of flow through the depth as across the area.”
Steggall’s own search for a way to speed vertical flow led to a mesh made from randomly oriented continuous nylon 6 monofilament. “At a very small amount of weight — 6 g/m2 (0.02 oz/yd2) or about the weight of two paper clips,” he reports, “the mesh induces flow in almost any type of carbon fabric.” The flow improves regardless of fiber angles (e.g., 0°/90°, ±60°, etc.). When the mesh is attached to each ply of a 300 g/m2 (8.8 oz/yd2) stitched carbon fabric, it creates a channeling effect like that from a 0° oriented uni fabric and the stitching. For heavier 400 g/m2 (12 oz/yd2) fabrics, he uses a 12 g/m2 (0.4 oz/yd2) mesh. “For me, this is the way to achieve permeability in carbon fabric because it provides good strength and toughness properties with only marginally more resin in the laminate.”
The material is now used by Gunboat International (Wanchese, N.C.) in its 55-ft/17m all-carbon-fiber production sailing catamaran. The company infuses the complex hull in one piece, with the nylon mesh layered between each ply of woven and stitched multiaxial carbon fiber fabric. Most impressive, it aids flow in the chine (transition from the hull bottom to the hull side), where 83 plies of carbon fiber unidirectional fabric and 10 plies of carbon fiber biaxial fabric provide resistance to deflection along the inner side of each hull. Steggall says the nylon web provided what the project needed: “consistency in the infusion and wet out at low risk plus 18 percent more energy absorption in impact testing.”
(End quote.)
I’m still in the researching and slowly-acquiring-materials phase of infusion, so I haven’t gotten to try it myself.
Oh yeah, as the owner of a home with some serious floor cracks, I may just try that one day.
Thanks,
Andrew